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ABSTRACT 

Permanent Magnet Synchronous Machines (PMSMs) are widely used in industrial applications due to 

their high efficiency and precise control capabilities; however, stator faults remain a critical threat to 

their operational reliability. Traditional detection methods, such as periodic inspections and basic 

electrical monitoring, often fall short in providing early, accurate fault detection and can result in 

either false alarms or overlooked issues. These limitations contribute to unplanned downtime, 

increased maintenance costs, and potential equipment damage. To address this challenge, the 

proposed system integrates advanced machine learning algorithms with sensor fusion techniques to 

improve the accuracy and reliability of stator fault detection in PMSMs. By leveraging data from 

multiple sensors—such as voltage, current, temperature, and vibration—the system offers a holistic 

view of machine health. Trained on historical datasets, the machine learning models identify patterns 

linked to stator faults, while built-in false alarm suppression algorithms ensure only genuine alerts 

prompt maintenance action. This approach enables proactive maintenance, reduces downtime, 

enhances safety, and lowers operational costs. 

Keywords: PMSM, Stator Fault Detection, Machine Learning, Sensor Fusion, Predictive 

Maintenance 

1. INTRODUCTION 

Permanent Magnet Synchronous Machines (PMSMs) have a rich history dating back to the late 19th 

century when electrical machinery began to revolutionize industrial processes. The concept of using 

permanent magnets to generate motion in synchronous machines emerged as a promising alternative 

to traditional electromagnets. In the early 20th century, significant advancements in magnet materials 

and manufacturing techniques facilitated the widespread adoption of PMSMs in various applications, 

including power generation, transportation, and industrial automation. 

The development of PMSMs gained momentum during the mid-20th century with the advent of 

modern power electronics and control systems. The integration of solid-state devices such as 

transistors and thyristors enabled more precise control over motor operation, leading to improved 

efficiency and performance. As industries increasingly sought energy-efficient solutions, PMSMs 

emerged as a preferred choice due to their high efficiency and superior controllability. 

In recent decades, advancements in materials science, motor design, and computational modeling 

have further propelled the evolution of PMSM technology. The integration of rare-earth magnets, such 

as neodymium and samarium-cobalt, has significantly enhanced motor performance while reducing 

size and weight. Moreover, advancements in sensor technology and data analytics have enabled the 

development of sophisticated monitoring and diagnostic systems for PMSMs, enhancing reliability 

and maintenance efficiency. 
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Despite their long history and widespread adoption, PMSMs continue to evolve, driven by ongoing 

research and technological innovation. Emerging trends such as Industry 4.0 and the Internet of 

Things (IoT) are shaping the future of PMSM technology, ushering in an era of smart, interconnected 

machines with enhanced monitoring, diagnostics, and predictive maintenance capabilities. 

2. LITERATURE SURVEY 

Electric vehicles (EVs) are attracting more and more attention in transportation due to enhanced 

performance, safety, and reduced environmental impacts. In particular, permanent magnet 

synchronous motors (PMSM) are applied widely as traction motors in EVs because of their high 

efficiency and power density. The healthy operation of the traction motor is crucial for the proper 

functioning of an EV. Since EV motors run in a harsh environment and complicated operating 

conditions, the stator winding insulation exhibits a higher failure rate [1]. This fault can lead to a 

catastrophic accident; therefore, timely identification and diagnosis of insulation faults for traction 

PMSMs are extremely important to ensure the safe operation of EVs. It is reported that inter-turn 

short faults (ITSF) account for 21% of all motor faults [2], which can lead to reduced motor efficiency 

and power output and even catastrophic failure. The majority of ITSFs originate in winding faults, 

which are caused by insulation malfunctions [3], but rapidly evolve into more severe failures that 

substantially impact motors. On the one hand, short-circuit paths in the motor can lead to a decline in 

its performance. These paths allow currents to bypass the normal winding segments [4], leading to 

reduced output power and efficiency. For PMSMs, this type of fault can generate a magnetic field 

with a higher intensity than the coercivity of the magnets, leading to permanent demagnetization and 

machine damage. On the other hand, ITSFs cause excessive temperature rises in the motor. Excessive 

heat can accelerate the aging and embrittlement of insulation materials, potentially leading to burnouts 

and exacerbating the short-circuit phenomenon [5].  

Furthermore, ITSFs increase motor noise and vibration. The presence of short-circuit paths introduces 

additional electromagnetic forces and vibrational forces in the motor, resulting in abnormal sounds 

and vibrations [6]. This not only adds to the noise pollution in the working environment but also risks 

loosening and damaging other components, further exacerbating the development of faults. The 

impacts and losses caused by stator winding short circuits in electric motors are extremely severe [7]. 

Therefore, timely diagnosis and repair of these faults are crucial to ensure the safe operation and 

prolongation of the motor’s lifespan. The health model of the Kalman filter is used to estimate the 

residual voltage drop of the rotor reference DQ axis under an ITSF [10].  

This observer avoids the use of voltage sensors but does not reduce the diagnostic accuracy of the 

ITSF. Ali performed KF observations on the current and voltage signals respectively [11], using the 

residual signal as the fault detection index; this method was robust against different fault resistances. 

However, linear KF cannot be used for systems with significant nonlinearity. Since most systems are 

nonlinear, suboptimal state estimation techniques can be employed. The extended Kalman filter 

(EKF) is one of these suboptimal techniques [12], where the measurement and system model 

equations are linearized, enabling the application of the linear Kalman filter algorithm. Nonetheless, 

the linearization in EKF may introduce instability to the method, particularly when dealing with 

extremely nonlinear systems. To overcome the limitations of EKF, the unscented Kalman filter (UKF) 

was proposed in [13]. The UKF employs a set of sigma points to estimate the propagation of the mean 

and covariance matrix [14]. EKF and UKF were used to detect the percentage and location of faults 

[15]. Another difference in the method is that the ratio of short-circuit turns is used as the state 

estimator. 

The ITSF diagnosis method based on the Luenberger state observer and current second-order 

harmonics was established in [16]. The advantage of this method is the ability to assess the severity of 
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failures, as well as the efficiency with which failures can be detected at an early stage and under 

various operating conditions. A high-order sliding mode observer was used to estimate the rotor flux 

and three-phase stator current in the fault state [17]. By comparing the measured and estimated values 

of stator three-phase currents, a fault detection method was designed. This comparison produces a set 

of residuals that are sensitive to failure. The analysis of these residual signals can be used to detect the 

damage of the stator windings. An equivalent model of the single-phase interturn fault motor served 

as the observer [18], where the error between the measured current and the estimated current were 

corrected as the core of the fault severity estimator. A sufficiently accurate model is established to 

determine the variation of different variables in the motor under this fault condition, and then the 

residual generated by the sliding mode observer is used to detect the ITSF. In another study, a PMSM 

model of single-phase short-circuit fault is established, and a sliding mode observer is developed to 

extract voltage disturbance information from the derived equivalent control signal to detect interturn 

faults [19]. However, the Luenberger observer is sensitive to changes in motor parameters. 

3. PROPOSED SYSTEM 

This paper focuses on the development and evaluation of stator fault detection strategies in Permanent 

Magnet Synchronous Machines (PMSMs) using machine learning techniques. Let's break down the 

key components and functionalities of the code: 

• Importing Libraries and Modules: By importing necessary libraries and modules  such 

as NumPy, Pandas, Matplotlib, Seaborn, scikit-learn, and CatBoost. These libraries 

provide functionalities for data manipulation, visualization, model building, and 

evaluation. 

• Importing Dataset: The dataset containing various electrical parameters of PMSMs is 

imported using Pandas' read_csv function. This dataset serves as the foundation for 

training and testing machine learning models for stator fault detection. 

• Data Analysis and Visualization: Exploratory data analysis (EDA) techniques are 

employed to gain insights into the dataset's characteristics. Descriptive statistics, 

correlation analysis, and visualization using Seaborn are utilized to understand the 

distribution of data and identify patterns relevant to stator fault detection. 

• Data Preprocessing: Data preprocessing steps such as handling missing values, encoding 

categorical variables, and splitting the dataset into independent variables (features) and 

the target variable (stator fault) are performed. Additionally, the dataset is divided into 

training and testing sets using scikit-learn's train_test_split function. 

• Model Building: Two classification algorithms, namely Ridge Classifier and CatBoost 

Classifier, are chosen for stator fault detection. Ridge Classifier is a linear classification 

algorithm, while CatBoost Classifier is a gradient boosting algorithm specifically 

designed to handle categorical features efficiently. Both models are trained using the 

training data. 

• Performance Evaluation: The performance of each classifier is evaluated using various 

evaluation metrics such as accuracy, precision, recall, F1-score, and confusion matrix. 

The se metrics provide insights into the models' ability to accurately classify instances 

into their respective classes, including the detection of stator faults. 
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Figure 1: Block Diagram of Proposed System. 

3.1 CatBoost Classifier: 

CatBoost Classifier is a gradient boosting algorithm designed for classification tasks, particularly 

when dealing with categorical features. It belongs to the family of ensemble learning methods and is 

known for its robustness, efficiency, and ability to handle categorical variables without the need for 

extensive preprocessing. Below is a detailed explanation of the principle, working, and process of the 

CatBoost Classifier, along with its disadvantages. 

Principle: 

The principle behind the CatBoost Classifier lies in its gradient boosting framework, which combines 

multiple weak learners (decision trees) to create a strong predictive model. CatBoost stands for 

"Categorical Boosting," indicating its capability to handle categorical features effectively. It employs 

a variant of gradient boosting that incorporates techniques to handle categorical variables and mitigate 

overfitting. 

 

Figure 2: Cat Boost Classifier Model Diagram. 

Working: 
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1. Gradient Boosting Objective Function: The objective function of gradient boosting aims 

to minimize the loss between the predicted values and the true labels. In CatBoost, the 

objective function typically involves a differentiable loss function such as log-loss for binary 

classification or multinomial logistic loss for multiclass classification. Mathematically, the 

objective function can be expressed as: 𝐽(𝜃)=∑𝑖=1𝑁𝐿(𝑦𝑖,𝐹(𝑥𝑖))J(θ)=∑i=1NL(yi,F(xi)) 

Where: 

• 𝐽(𝜃)J(θ) represents the total loss function. 

• 𝑁N is the total number of samples. 

• 𝑦𝑖yi is the true label of sample 𝑖i. 
• 𝐹(𝑥𝑖)F(xi) is the predicted value for sample 𝑖i. 
• 𝐿(𝑦𝑖,𝐹(𝑥𝑖))L(yi,F(xi)) is the loss function that measures the discrepancy between the 

true label and the predicted value for sample 𝑖i. 
2. Regularization Techniques: CatBoost incorporates various regularization techniques to 

prevent overfitting and improve model generalization. One such technique is depth 

regularization, which penalizes deeper trees to control model complexity. Mathematically, the 

depth regularization term can be expressed as: 𝑅𝑑𝑒𝑝𝑡ℎ=𝜆∑𝑡=1𝑇𝛾𝑡2Rdepth=λ∑t=1Tγt2 

Where: 

• 𝑅𝑑𝑒𝑝𝑡ℎRdepth represents the depth regularization term. 

• 𝜆λ is the regularization parameter controlling the strength of regularization. 

• 𝑇T is the total number of trees in the ensemble. 

• 𝛾𝑡γt is the depth of tree 𝑡t. 
3. Learning Rate Adaptation: CatBoost introduces an adaptive learning rate strategy that 

adjusts the learning rate dynamically based on the current tree structure and feature 

importance. The adaptive learning rate 𝜂η for each tree can be computed as: 

 

Where: 

• 𝜂η is the adaptive learning rate. 

• num_treesnum_trees is the current number of trees in the ensemble. 

• leaf_estimation_iterationsleaf_estimation_iterations is the number of iterations used 

for leaf value estimation. 

4. Categorical Feature Handling: CatBoost employs an efficient algorithm to handle 

categorical features during tree construction. It assigns numerical values to categorical 

variables based on their frequency and the target variable's response, preserving their 
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semantic meaning. The categorical feature handling process is integral to CatBoost's 

performance and efficiency. 

5. Parallel and GPU Training: CatBoost implements efficient parallelization techniques and 

supports GPU acceleration, allowing for fast training on large datasets. By leveraging parallel 

processing and GPU resources, CatBoost achieves significant speedups compared to 

traditional gradient boosting implementations. 

Disadvantages: 

• Slow Training Time: Despite its efficiency improvements, CatBoost training can still be 

slower compared to simpler algorithms like logistic regression or decision trees. The 

algorithm's complexity and the need for extensive tree building iterations contribute to 

longer training times, especially on large datasets. 

• High Memory Consumption: CatBoost requires significant memory resources, 

particularly when dealing with high-dimensional datasets or datasets with a large number 

of categorical features. The algorithm's internal data structures and the need to store 

intermediate results during training contribute to high memory consumption. 

• Sensitivity to Hyperparameters: CatBoost performance is sensitive to hyperparameter 

tuning, including parameters related to tree depth, learning rate, regularization, and 

feature combinations. Finding the optimal set of hyperparameters can be challenging and 

may require extensive experimentation. 

• Potential Overfitting: Despite its regularization techniques, CatBoost is susceptible to 

overfitting, especially when training on noisy or small datasets. Careful hyperparameter 

tuning and regularization strategies are necessary to prevent overfitting and ensure good 

generalization performance. 

• Limited Interpretability: Like other ensemble learning methods, CatBoost models are 

inherently complex, making them less interpretable compared to simpler models like 

logistic regression or decision trees. Understanding the individual contributions of 

features or the decision-making process of the model can be challenging. 

• Difficulty in Handling Imbalanced Data: CatBoost may struggle to effectively handle 

imbalanced datasets, where one class is significantly more prevalent than the others. 

While it provides options for class weighting and sampling techniques, finding the right 

balance between different strategies can be challenging. 

• Dependency on Data Quality: The performance of CatBoost heavily depends on the 

quality and representativeness of the training data. Noisy or biased data can lead to 

suboptimal model performance and may require preprocessing steps such as data cleaning 

or feature engineering. 

4.RESULTS AND DESCRIPTION 

Here's a description of the features present in the dataset: 

• u_q: This represents the quadrature-axis voltage component in the motor's control system. It 

is an important parameter in field-oriented control (FOC) of electric motors, impacting torque 

production. 

• coolant: This feature measures the temperature or flow rate of the coolant used to maintain 

the motor's temperature. Effective cooling is crucial to prevent overheating and ensure 

optimal motor performance. 
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• stator_winding: This represents the temperature of the stator winding. Stator winding 

temperature is critical for diagnosing insulation issues and preventing damage due to 

excessive heat. 

• u_d: Similar to u_q, this represents the direct-axis voltage component. Together, u_d and u_q 

are used to control the motor's magnetic field and torque production. 

• stator_tooth: This measures the temperature of the stator tooth. The stator tooth temperature 

can indicate overheating or hot spots that may lead to motor failure. 

• motor_speed: This feature records the rotational speed of the motor, typically measured in 

revolutions per minute (RPM). Motor speed is a fundamental operational parameter affecting 

performance and efficiency. 

• i_d: This represents the direct-axis current component. In FOC, i_d is used to control the 

magnetizing current of the motor, impacting the efficiency and stability of the motor 

operation. 

• i_q: This represents the quadrature-axis current component, which directly affects the torque 

produced by the motor. 

• pm: stands for permanent magnet temperature. This is crucial in motors with permanent 

magnets, as excessive heat can demagnetize the magnets, reducing efficiency and torque. 

• stator_yoke: This measures the temperature of the stator yoke. The stator yoke temperature 

helps in monitoring the overall thermal state of the motor. 

• ambient: This feature records the ambient temperature around the motor. Ambient 

temperature affects the motor's cooling efficiency and overall thermal management. 

• torque: This measures the torque produced by the motor, an essential performance metric 

indicating the motor's ability to perform work. 

• profile_id: This is an identifier for different operational profiles or test conditions. Each 

profile ID might correspond to a specific test scenario or configuration. 

• target: This is the target variable for the machine learning model, indicating whether a fault is 

present (binary classification). Typically, a value of 0 might indicate 'No Fault' and a value of 

1 might indicate 'Fault'. 

 

 

Figure 3: Presents the Sample dataset of the Stator false dataset. 
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Figure 4: Presents the count plot of Stator false dataset. 

 

Figure 5: Shows a classification report of a Ridge Classifier model. 
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Figure 6: Confusion matrix of Ridge Classifier model. 

 

   

Figure 7: Shows a classification report of a CatBoost Classifier model. 
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Figure 8: Confusion matrix of CatBoost Classifier model. 

The figure 6 confusion matrix of the Ridge Classifier model visually represents the performance of 

the model in classifying different categories of mouth diseases. It provides a clear overview of the true 

positive, true negative, false positive, and false negative predictions made by the model for each class. 

The figure 8 classification report of the CatBoost Classifier model presents a detailed summary of the 

model's performance in terms of precision, recall, F1-score, and support for each class. It offers 

insights into the model's ability to correctly classify instances of each disease category. The figure 

68confusion matrix of the CatBoost Classifier model illustrates the model's performance but 

specifically for this classifier. It provides a visual representation of how well the model predicts the 

actual classes of Fitness activities, aiding in understanding its activities. 
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Figure 9: Proposed CatBoost Classifier model Prediction on test data. 

 

The figure 9 comparison table of performance metrics presents a comprehensive overview of the 

performance of different classifiers, such as Ridge Classifier and CatBoost Classifier. It allows for a 

direct comparison of metrics such as accuracy, precision, recall, and F1-score, enabling stakeholders 

to make informed decisions about model selection. The figure 6 proposed CatBoost Classifier model's 

prediction of fault on a test data demonstrates the practical application of the model.  

5.CONCLUSION 

The development of advanced stator fault detection strategies for PMSMs is essential for ensuring 

reliable and uninterrupted operation in industrial applications. By leveraging cutting-edge 

technologies such as machine learning and sensor fusion, researchers aim to overcome the limitations 

of traditional maintenance methods and develop proactive fault detection systems capable of 

accurately identifying stator faults in real-time. 

Looking ahead, future research in this field may focus on further improving the accuracy, robustness, 

and scalability of fault detection algorithms, as well as exploring novel sensor technologies and data 

analytics techniques. Additionally, integrating fault detection systems with predictive maintenance 

and condition monitoring platforms can enable more proactive and data-driven maintenance 

strategies, further enhancing the reliability and efficiency of PMSMs in industrial environments. 
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